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FLOWFIELD OF A LIFTING HOVERING ROTOR--A NAVIER-STOKES SIMULATION

SUMMARY

The viscous, three-dimensional flow field of a lifting helicopter rotor in hover is calculated

by using an upwind, implicit, finite-difference numerical method for solving the thin layer Navier-

Stokes equations. The induced effects of the wake, including the interaction of tip vortices with

successive blades, are calculated as a part of the overall flowfield solution without using any ad hoc

wake models. Comparison of the numerical results for the subsonic and transonic conditions show

good agreement with the experimental data and with the previously published Navier-Stokes calcu-

lations using a simple wake model. Some comparisons with Euler calculations are also presented,

along with some discussions of the grid refinement studies.

INTRODUCTION

The accurate numerical simulation of the flowfield of a lifting helicopter rotor continues to

be one of the most complex and challenging problems of applied aerodynamics. This is true in

spite of the availability of the present day supercomputers of Cray-2 class and improved numerical

algorithms. However, many advances have been made to date with the use of simpler set of equa-

tions of fluid motion, such as the potential flow equations, to model these complex flowfields. The

equations have been simplified by coupling the solution scheme with an empirical wake model to

bring in the influence of the vortex wake. Solution schemes that use this idea are often grouped

under methods using wake models and encompass the potential flow (refs. 1-5), the Euler (refs. 6-

8) and the Navier-Stokes methods (refs. 9-12). In contrast to these methods that use ad hoc wake

models, there are methods that compute the essential details of the induced effects of vortex wake

as a part of the overall flowfield solution. These are called the wake capturing schemes and have

been demonstrated for the solutions of the potential flow (ref. 13), the Euler (refs. 14-17) and the

Navier-Stokes equations (ref. 18).

The basic assumptions of potential flow methods restrict their application to low supercritical

speeds without the use of entropy corrections. Despite this feature, the potential flow methods, cou-

pled with a wake modeling, have been very useful in the industrial environment for design analysis

(refs. 2-5). On the other hand, the Euler equations contain the essential physics to describe convec-

tion of vortical flows and do not have the restriction on the Mach number. But they still lack the

essential ingredients to model the separated flows and inviscid-viscous interactions associated with

shock-induced separated flows. Nevertheless, the Euler methods have been used to model these

complex vortical flows by coupling with wake models (refs. 6-8) as in potential flow methods. But

the major drawback of these methods is that they have proven to be more expensive in comparison

to the potential flow methods.

Even Navier-Stokes methods (refs. 9-12) have been coupled with wake models to calculate

these complex flows. Although these methods capture viscous effects adequately, they remain
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limited by thewakemodeling,whichtendsto berestrictedto simplegeometriesandplanforms.In
general,amajordisadvantageof thesemethodswhichusewakemodelingis thatthetechniqueof
prescribinga wakehasto bespecializedfor eachbladeshapeandplanformandthereforecannot
easilyhandlearbitrarybladeshapeswith twistor taper.

Therefore,theweaklink in theabovewake-coupledmethodologieshasbeenthewakemod-
eling. In contrastto themethodsusingwakemodeling,severalschemeshaveattemptedto capture
thewakeandits effectasapartof theoverallsolutionscheme.Thesemethodsrangeincomplexity
from potentialflow methods(ref. 13)to a Navier-Stokesmethod(ref. 18). All of theseinviscid
methods(refs.13-17)utilizefinite-volumeformulationfor thesolutionmethod.Of thesedifferent
wakecapturingschemes,thepotentialflow schemeof Ramachandranetal. (ref. 13)appearstobe
themostaccurate.All of theEulermethodsappearto computetheflow in thetip regionreason-
ablywell. However,theinviscidmethodsstill lack theability to captureaccuratelytheformation
of a tightly-braidedtip vortexstructure,andtherefore,the accuracyof thecomputedwakeand
tip-vortexcoremaybequestionable.

Thepurposeof thisstudyis to developacalculationmethodfor thesolutionof Navier-Stokes
equationsfor thecompleteflowfieldof a lifting rotor,includingthewakeandits inducedeffects.
Thevortexwakeanditseffectsarecapturedasapartof thecompleteflowfield,andthusnoarbitrary
inputs arenecessaryto describethe wake. Althoughthis is not very different in conceptfrom
theEulerwake-captureschemesdiscussedabove,theNavier-Stokesapproachwasneededfor the
following reasons:1)bettertip-flow simulation,whichinvolvesresolvingtheblade-tipseparation
andtheformationof aconcentratedtip vortex,2) accuratesimulationof strongviscous-inviscid
interactioninvolving shockinducedseparationat highbladetip speedsandhighcollectivepitch
conditions,and3) futuremodelingof retreatingbladeanddynamicstall regimesin forwardflight.

The numericalcodeusedin this studyis animprovementof theversionthatwasdeveloped
previouslyin relatedstudieswith wakemodeling(ref.9). Onefundamentaldifferenceof thenew
numericalschemeis theuseof Roe'supwindingin all threedirections(ref. 19).This feature,cou-
pled with a simplifiedleft-hand-side,hasproducedanefficientandaccuratenumericalscheme.
Theseadditionalchangesin theNavier-Stokesalgorithmarebasedonsomeof thenumericalpro-
ceduresdescribedin reference20andwill bedescribedbriefly in thefollowing sections.

The first author(GRS)would like to acknowledgethesupportof this researchby theU.S.
Army ResearchOfficeunderContractsDAAL03-88-C-0006andDAAL03-90-C-0013.Computa-
tional time wasprovidedby theApplied ComputationalFluidsBranchof NASA AmesResearch
Center.

GOVERNING EQUATIONS

The governing differential equations are the thin layer Navier-Stokes equations. These can be

written in conservation-law form in a generalized body-conforming curvilinear coordinate system
as follows (ref. 21):

(1)
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where7-= t, ( = ((z,y,z,t), 77 = r/(z,y,z,t) and ( = ((x,y,z,t). The coordinateA system

( z, y, z, t) is attached to the blade (see fig. 1). The vector of conserved quantities Q and the inviscid

flux vectors E, if, and ,_ are given by

[ppu ] pU pV pW[puU +'xp] 1 [puV +rlzP] 1 [P uW +'zp]

1 ] 1 I pve+_,vI, _ = | p,v + ,_pI ' _ = I p,w ÷¢_pI0=7 [Pp_ ' #=T/p_u+¢,pj 7/p_v+,7,pj 7/p_w+<,pj
L UH - (tp L VH -rltp L WH - (tp

(2)

where H = (e + p) and e = 0 or 1 for the Euler or the Navier-Stokes equations, respectively. In

these equations, U, V, and W are the contravariant velocity components defined, for example, as

U = (t + (xu + (uv + (zw. The Cartesian velocity components are represented by u, v, and w

and the density, pressure, and the total energy per unit volume by p, p, and e, respectively. The

characteristic length and velocity scales are the rotor blade chord and the ambient sound speed, and

p and p are nondimensionalized by their respective ambient values. The quantities (x, (_, (z, (t,
etc. are the coordinate transformation metrics and J is the Jacobian of the transformation. For the

thin layer approximation used here, the viscous flux vector S is given by

1IS= 7

I_ m l

0 ].mlu¢ + _rnEG
Ornlv< + _m2(v
#ml w<+ _3mEG

m3 + _3m2( (zu + (yv + (zw)

(3)

with

mE = (xU< + (_V< + (,W<

1 u2 v2 1 (a2)_
m3 = _( + + wz )_ + Pr ( 7 -1)

where _Re is the Reynolds number, Pr is the Prandtl number, ,_ is the ratio of specific heats, and a

is the speed of sound. The fluid pressure, p is related to the conservative flow variables, Q, through

the nondimensional equation of state for a perfect gas,

P 2 v2 w2
p= (,,/-1){ e- _-(u + + ) }

(4)

For turbulent viscous flows, the viscosity coefficient/_ in ,_ is computed as the sum of/_t +/_t

where the laminar viscosity, _l, is estimated using Sutherland's law and the turbulent viscosity,/_t,

is evaluated using the Baldwin-Lomax algebraic eddy viscosity model (ref. 22).

3



NUMERICAL ALGORITHM

A finite-difference, upwind, numerical algorithm is developed for the helicopter rotor appli-

cations. The evaluation of the inviscid fluxes is based on an upwind-biased flux-difference split-

ting scheme for the right-hand side while an LU-SGS (Lower-Upper - Symmetric Gauss-Seidel)

scheme, suggested by Jameson and Yoon (refs. 23 and 24), is used for the implicit operator. The van

Leer MUSCL (monotone upstream-centered scheme for the conservative laws) approach (ref. 25)

is used to evaluate the conservative variables to obtain the second- or third-order accuracy with

flux limiters so as to be TVD (total variation diminishing). The upwind-biased scheme used on the

right-hand side was originally suggested by Roe (ref. 26 ) and later extended to three-dimensional

flows by Vatsa et al. (ref. 19). The chief advantage of using upwinding is that it eliminates the ad-

dition of explicit numerical dissipation and is known to produce less dissipative solution (ref. 19).

This feature, coupled with a fine grid description in the tip region, increases the accuracy of the
wake simulation. A similar algorithm was used in the finite-volume Euler scheme of reference 17

to investigate the exact same problem studied here.

The space-discretized form of the differential equation, equation 1, is

A,7

_ Gt+{--Gt-_- + 1 Sl+{.-,_t__.

A_ Re Aft

(5)

where j, k, and l correspond to the _, r/, and _ coordinate directions, respectively.

The application of Roe's upwinding (ref. 19) to the numerical flux of the inviscid terms results

in the locally one-dimensional form and can be written, e.g., in thc _ direction, as

^ 1 A

E(QL,QR,(V_/J)j+_) =_[E(Qn,(V_/J)]+½ ) + E(QL,(V_/J)j÷_) (6)

--IA(QL,Qn,(V_/J)j+_)I(QR- QL)]

where A is the Roe-averaged Jacobian matrix and QL and QR are the left and right state variables.

The scheme degenerates to the first-order accuracy ff QL = Qj and QR = Qj+1. Higher-order

schemes can be constructed from a one-parameter family of interpolations for the primitive vari-

ables, p, u, v, w, and p. For example,

¢i
pt = {1+ T[(1 - _)x7 + (1 + r;)A]}pj

p,={1 ¢J+l[(l+n)V+(1--_)Al}pj+l
4

where V and A are backward and forward difference operators, and _ is a parameter that controls

the construction of higher-order differencing schemes. For example, to construct the third-order
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schemein thepresentmethod,_ -- _-,Koren'sdifferentiablelimiter (ref. 27) is used.
¢ iscalculatedas

3VpjApi + e

42i = 2(Ap i _ Vpj)2 + 3VpjApj + e

The limiter

(7)

where a small constant, typically e = 10 -6, is added to prevent the division by zero. Similar

formulae are used for the other primitive variables. The viscous flux terms are discretized using

second-order central-differencing (ref. 21).

The time marching integration procedure uses the LU-SGS method. The details of this scheme

are described elsewhere (ref. 20). The final form of this algorithm can be written for a first-order

time accurate scheme as

LDUAQ" = -_tRHS" (8)

where

L = I - At.A-Ij,k.z + AtV_.A + - A t/3-b,k,l + AtXT./_÷ -- AtC-Ij,k,l + At_7_C ÷

D=[I+At(A+-A - + B+-B- + C+ - C-) Ii,_,11-'

U = I + Ate+ b,k, + AtA_- + At/7÷Ij,,L + ArAb/3- + Ate+ Ij,k,L+ ata¢_-

where A t is the time step, RHS represents the discretized steady state terms, e. g., equation 5, and

nrefers to the current time-level. Also, A ÷ = ½(A + cry), A- = ½(A - (r_), cr_ = IUI+ are ÷ E,

E = 0.01 typically, and r_ = ¢_2 + (2 + _2. As a result of the simplified form of the Jacobian

terms, e.g., A ÷, the block diagonal matrix D reduces to a scalar diagonal matrix. Thus this method

requires only two (one forward and one backward) sweeps with scalar inversions and leads to less

factorization error. Lastly, additional source terms have been introduced to account for the rotation

of the blades because of the blade-fixed coordinate system used here.

The present numerical scheme uses a finite-volume method for calculating the metrics. The

chief advantage of such a formulation is that the metrics, including the time metrics, can be formed

accurately (ref. 28), and this approach captures the free-stream accurately (ref. 17). To be compati-

ble with the present finite-difference numerical scheme, the metrics are evaluated at the grid nodes
instead of the cell centers of a standard finite-volume method (ref. 20). Also, the time metrics are

evaluated in the same manner as in a finite-difference scheme, which is less expensive compu-

tationally than rigorous evaluation of the time metrics. However, free-stream subtraction is then

required to restore accuracy to the time-metric terms.

The flowfield of a hovering rotor is initially quiescent (ref. 29) and the evolution of the flow-

field is monitored as the blade is set in motion. To take advantage of the quasi-steady nature of

the hovering rotor flowfield, a locally-varying time step is used in the integration procedure to

accelerate convergence, as suggested in reference 30.
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GridsandBoundaryConditions

Body-conforminggridsweregeneratedfor therotorbladesusinganelliptic solver.Becauseof
thecylindricalnatureof theflow of ahoveringrotor,aC-H cylindricalgrid topologywaschosen,
as in reference17. In contrastto theexperimentalmodelrotor thathasa squaretip, thepresent
numericalschemeapproximatesthisasa beveltip becauseof theH-topologyof thegrid in that
direction(seeref. 31).

Thestandardviscousgridsusedherehad217grid pointsin thewraparound(alongthechord)
directionwith 144pointson thebody,71pointsin thespanwise(radial)directionwith 55points
on thebladesurface,and61pointsin thenormaldirection.Thegridwasclusteredneartheleading
andtrailing edgesandnearthe tip regionto resolvethe tip vortex. It wasalsoclusteredin the
normaldirectionto resolvetheviscousflow nearthebladesurface.Thereareabout15pointsin
theboundarylayerwith a spacingof thefirst grid pointfrom thesurfaceequalto 5× 10-5 chord
(that translatesto a 1/÷= O(1)). A coarse grid was constructed from this fine viscous grid by

removing every other point in all three directions. The inboard plane near the axis of rotation was

located at a radial station equal to one chord. The grid outer boundaries were set at 8 chords in all

directions. The same grids were used for the Euler calculations.

Figure 1 shows the coarse grid that was used in the computations. Because of the symmetry

of the hovering flow and the periodic boundary condition described below, the calculations could

be performed for only one blade. Figure la shows the cylindrical nature of the grid in the plane

of the rotor, and figure lb shows an isometric view of the grid boundary for a single blade. For

clarity, the figure shows only the blade and side boundaries. The bottom surface and other grid line

are omitted. Also shown is the coordinate system, where z is in the chordwise direction, !J is in the
radial direction, and z is in the normal direction. The blade motion is counterclockwise.

All the boundary conditions are applied explicitly. The radial inboard and far-field boundaries,

as well as the upper boundary of the cylindrical mesh, are updated by means of a characteristic-

type boundary condition procedure, although the Roe's upwinding used in the numerical procedure

would otherwise treat the boundaries in a 1-D characteristic sense anyway. At the wall a no-slip

boundary condition is used for the viscous calculations. The Euler calculations use an extrapolation

of the contravariant velocities at the surface. The density at the wall is determined by a zeroth-

order extrapolation. The pressure along the body surface is calculated from the normal momentum

relation (see, for example, ref. 21). The total energy is then determined from the equation of state.

To capture the information in the wake region of the blade, a periodicity condition is used

to swap the information, after interpolation, at the front and back boundaries of the cylindrical

grid topology (see fig. lb). This is also done in an explicit manner. At the bottom boundary, the

scene of the far-field wake, an approximate condition based on the normal velocity is used. For an

outflow condition, all conserved flow quantities are extrapolated from the grid interior except for

the energy, which is calculated by prescribing the free-stream pressure. For inflow at this boundary,
the free-stream (ambient) conditions are specified.



RESULTS AND DISCUSSION

The test cases considered in this study correspond to the experimental model hover test con-

ditions of Caradonna and Tung (Ref. 29). The experimental model consists of a two-bladed rigid

rotor with rectangular-planform blades with no twist or taper. The blades are made of NACA 0012

airfoil sections with an aspect ratio of 6. Three experimental conditions were chosen from among

the data: 1) tip Mach number Mtip = 0.44, collective pitch O = 8 °, and the Reynolds number based

on the tip speed, Re = 1.92x 10 6; 2) Mtip = 0.877, 0 = 8 ° and Re = 3.93 × 10 6; and 3) Mtip = 0.794,

O = 12 ° andRe = 3.55×10 6 .

Fine Grid Navier-Stokes Results

Surface pressures are shown in figures 2-4 for the three experimental conditions considered.

These calculations were done on a fine grid consisting of nearly one million points. Figure 2 shows

the surface pressures for the conditions of Mtip = 0.44, 0 = 8 °, and Re = 1.92 × 10 6 . In this figure, the

present calculations are compared with the experimental data of reference 29 and the results from a

previous Navier-Stokes calculation that used a simple wake model (ref. 9). The present calculations

agree well with the experimental data for all radial stations. There are some improvements in the

results at y/R = 0.50 and 0.96 over the previous results from reference 9. It should be pointed

out that the calculations of reference 9 used a O-O grid topology with nearly 700,000 grid points

having a grid clustering similar to the present grid.

Figure 3 shows a comparison of surface pressures for the condition of Mtip = 0.877, 8 = 8° and

Re = 3.93 × 106 . At this transonic flow condition, the present calculations show excellent agreement

with the experimental data for all radial stations. In contrast to the calculations of reference 9, the

present results show shock locations and shapes that are well captured. The inboard regions of the

flow are also predicted more accurately; this indicates that the present computed wake is superior

to the approximate wake model of reference 9.

Figure 4 shows a comparison of surface pressures for the condition of Mtip = 0.794, O = 12° and

/_e = 3.55 × 106 . Because of the high collective pitch, this case is more severe in terms of the shock

strength and shock-induced boundary layer separation, even though the tip speed is slightly less

than the previous case. The results show good agreement of the calculations with the experimental

data, especially near the tip.

Figure 5 shows the extent of shock-induced boundary layer separation for the transonic cases

discussed above. These are delineated as surface particle flow details and are created by releasing

fluid particle tracers at one grid point above the surface and forcing them to stay in that plane. Such

a view mimics the surface oil flow details measured in a laboratory experiment. Figure 5a shows

the details of this flow for the case of Mtir, -- 0.877 and 0 = 8 °. The separation and reattachment

locations are apparent in this figure. It is seen that this flow condition produces a mild shock-

induced separation in the outboard part of the blade. In contrast, the shock-induced separation

and viscous-inviscid interaction are much stronger for the case of Mt_p = 0.794 and 8 = 12°. The

surface particle flow pattern for this more severe case is shown in figure 5b. As seen, the extent of

the separation is much larger for this flow condition than for the case of figure 5a. It is interesting,
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however,to notethattheseparationpatternsin thetip regionareapproximatelythesamefor these
cases.

A generalcomparisonof thepresentresultswith theexperimentaldatacanbemadeby exam-
ining theboundcirculationdistribution.Figure6 showssuchaplotof dimensionlesscirculation,
F/f_ R 2 , as function of r/R for 0 = 8 ° case and tip speeds of 0.44 and 0.877, corresponding to the

data presented in figures 2 and 3. Here r is the radial distance from the rotation axis, R is the radius

of the rotor, f_ is the constant angular velocity of the rotor, and F is the circulation. The integrated

local lift values are used from both the coarse and fine grid calculations to compute the dimension-

less circulation shown in figure 6. Also shown are the integrated data from the experiments, which

were reported to be essentially independent of tip speed. The calculations show a fair agreement

with the experiments, except in the inboard part of the blade. This suggests that only the near-field

effects of the tip vortex are captured as well as desired. There are two possible reasons for the

poor agreement in the inboard part of the blade. First, the vortex wake becomes diffused in the

far-field grid, so its induced effect is significantly diminished. Second, the inboard plane boundary

condition may be indequate. In contrast to the experimental observation, the present calculations

show some dependency on the blade tip speed.

In the tip region the agreement is also not very good. This may be due to the bevel tip that

is used in the computation compared to the square-tipped blade in the expe_Sments. Overall, how-

ever, the surface pressure distributions appear to agree better with the experiments than the bound-

circulation distribution. Relatively minor discrepancies in the pressure distributions near the lead-

ing edge, where the experimental transducer locations are relatively sparse, seem to translate into

significant differences in the circulation distribution.

The chief advantage of the Navier-Stokes methods is to predict the separated flow in the tip

region and the associated detailed structure of the tip vortex. The prediction of the overall shed-

wake geometry is the most important step in the process of accurate modeling of the complete hover

flowfield. The ability to keep this shed wake (including the vortex structure) intact from diffusing

due to the numerical dissipation is a more complex issue. The ability to convect this shed wake

without numerical dissipation determines if the inflow in the inboard parts of the blade is correct.

Figure 7 shows a near-field view of the tip vortex particle path trajectory for the experimental

conditions of Mt_ = 0.794 and 0 = 12 ° corresponding to figure 4. These trajectories are generated

by releasing particles of fluid in the vicinity of the tip of the blade on both surfaces and allowing

them to move freely in time and space. It is apparent from this that the particles released right on

the tip become braided and stay together in the vicinity of the core. As observed before (ref. 31), the

process of formation of the tip vortex involves braiding of fluid particles from both upper and lower

surface of the blade. As the process of braiding of fluid particles from upper and lower surfaces

continues, the tip vortex lifts up from the upper surface and rolls inboard in the downstream wake.

After identifying the fluid particles in the vicinity of the core in figure 7, fewer particles were

released on the tip of the blade in the proximity of the quarter-chord region to trace out a trajectory

of the tip vortex path. Figure 8 show two views of this trajectory. The computed tip vortex trajectory

in space for a single blade is shown in figure 8a. Figure 8b shows a view of the tip vortex looking

from the top which highlights the contraction of the wake. The contraction of the wake at 180 °



and 360 ° azimuthal positions is approximately 12.8% and 18.2% of the radius, respectively, in

agreement with the experimental observation of 12.5% and 17% for this flow condition.

Fine Grid versus Coarse Grid Results

The results presented in the preceeding sections were calculated on a fine grid of nearly one

million points. The initial test calculations were made primarily on a coarse Navier-Stokes grid of

109×36× 31 size. This grid was generated by removing every other point from the finegrid in all

three directions. The outer dimensions of the grid and the grid topology are thus the same as for

the previous fine grid.

Figure 9 shows a comparison of surface pressure distributions for the fine and coarse grids

for the experimental condition of Mtip = 0.877, 0 = 8 ° and Re = 3.93 × 106 . It is surprising to

see such good agreement of the coarse grid results overall with those of the fine grid and with

the experiments. In the regions where the shocks are very strong, there are slight differences as

expected. The results inboard ofy/R = 0.50 show a bigger difference as seen from figure 6. These

quasi-steady results for the coarse grid took about one hour of CPU (central processor unit) time

on the Cray-2 supercomputer.

Euler versus Navier-Stokes Results

As discussed earlier, there have been several attempts to capture rotor wakes using Euler meth-

ods (refs. 14-17). The vortex formation in the tip region of a wing or a helicopter blade is a result

of complex three-dimensional separated flow, and it is not clear how the Euler methods are able to

mimic viscosity and separation to produce a vortex structure. Nevertheless, these Euler methods

have been able to predict the pressure distributions and spanwise blade loading reasonably well

for the outer part of the blade. Against this background, a limited comparison of surface pressures

has been made for the Euler and Navier-Stokes methods calculated on the same fine grid of about

one million points. It may be noted that the Euler version of the code did not exhibit any stability

problems with this fine Navier-Stokes grid.

A typical comparison of the Euler results with the Navier-Stokes results is presented in fig-

ure 10 for the experimental test condition of Mtip = 0.877, 0 = 8°, and Re = 3.93× 106 . Because it

neglects viscous-inviscid interaction, the Euler method overpredicts the shock wave strength and

position for y/R > 0.80. Otherwise, the Euler results are in good agreement with the Navier-Stokes

results, which show mild shock-induced separation for this flow condition (see fig. 5a). The over-

all agreement of surface pressures certainly does not reflect the details of the flow near the blade

surface, especially the separation pattern and vortex wake details as predicted by the Navier-Stokes

method. The details of the wake structure need to be investigated further.

CONCLUSIONS

The lifting hovering rotor flowfield is calculated by means of an implicit, completely upwind,

finite-difference numerical procedure for the solution of thin layer Navier-Stokes equations using

a cylindrical C-H grid topology and body fixed coordinates. The vortex wake and its induced
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effectsarecapturedasapartof theoverallnumericalsolutionby theuseof aperiodicitycondition,
andthemethodthereforedoesnot useanyadhocwakemodels. Thepresentnumericalresults
arein goodagreementwith the experimentaldata,andtheyrepresentan improvementover the
previouslypublishedNavier-Stokesresultsthatusedasimplewakemodel.Therefore,themethodis
promising.However,severalimportantissuessuchasdrag,power,andthedetailedwakegeometry
remainto beexaminedin detail.

The goodagreementof the surfacepressurespredictedby theEuler methodwith thoseof
Navier-Stokesresultsseemsto suggestthatthedetailsof surfaceflow includingseparationand
tip vortexdetailsarenot importantfor predictingairloads.This needsfurther investigation.The
robustnessof thepresentmethodologyfor Eulercalculationsis alsodemonstrated.Comparison
of coarseandfinegrid resultsindicatethatthefarfieldwakeeffectsarenot aswell capturedwith
coarsegrids. Thenumericalmethodis fairly efficientandrunsat 145MFLOPSon the Cray-2
supercomputer.Thequasi-steadyNavier-Stokescalculationspresentedherefor coarseandfine
gridstookapproximately1hourand15hoursof CPUtime,respectively,on thismachine.
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Fig. 1 Coarse C-H cylindrical grid topology for a two-bladed rotor; a) view in the plane of the

rotor, and b) isometric view showing the grid boundaries for a single blade.
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Fig. 2 Comparison of surface pressures for a lifting hovering rotor; Mt,p = 0.44, 8 = 8°, and

Re = 1.92× 10 6 .
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Navier-Stokes captured wake results - Present
.... Navier-Stokes prescribed wake results - Ref, 9

, I , I , I , I i I
0 .2 .4 .6 .8 1.0

X

Fig. 3 Comparison of surface pressures for a lifting hovering rotor; Mt,p = 0.877, 0 = 8 °, and
Re = 3.93 × 106.
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Navier-Stokes captured wake results - Present

• O Experimental data- Ref. 29
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Fig. 4 Comparison of surface pressures for a lifting hovering rotor; Mtiv = 0.794, 0 = 12 °, and
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Fig. 5 Computed surface particle flow detail highlights the shock-induced boundary layer separa-

tion for the flow conditions of a) Mtip = 0.877, O = 8°, and Re = 3.93x 10 6 , and b) Mtip = 0.794,

8 = 12 °, and Re = 3.55× 10 6 .
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Fig. 6 Comparison of bound circulation distribution for the case of collective pitch 0 = 8° with tip

speeds of Mtip = 0.44 and 0.877.

Fig. 7 Calculated tip vortex particle flow details showing the near-field view for the condition

Mtiv = 0.794, 0 = 12 °, and Re = 3.55× 10 6
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Fig. 8 Calculated tip vortex trajecotry for the flow conditions of Fig. 7; a) view showing the

captured tip vortex path and its vertical descent, and b) view highlighting the contraction of the

wake.
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Navier-Stokes captured wake results - Fine grid (217 × 71 x 61)
.... Navier-Stokes captured wake results - Coarse grid (109 x 36 x 31)

• O Experimental data- Ref. 29
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Fig. 9 Comparison of surface pressures with coarse and fine grids for the case of Mtir, = 0.877,

0 = 8°, and Re = 3.93x 106 .
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Navier-Stokes captured wake results - Present
.... Euler captured wake results - Present
• O Experimental data- Ref. 29
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Fig. 10 Comparison of surface pressures for Euler and Navier-Stokes solutions; Mtiv = 0.877,
O = 8 °, and Re = 3.93× 106 .
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